Micro Electro Mechanical System (MEMS) based Pressure Sensor in Barometric Altimeter
نویسندگان
چکیده
-Barometer is a well-organized tool for determining atmospheric pressure. The altimeter is a tool which calculates the vertical distance in accordance with a reference level. The barometric altimeter, computes the altitude according to the atmospheric pressure. Accuracy and size are the major issues in altimetry. On the other hand the present day altimeters employing conventional pressure sensors consume more floor space and provide very less accuracy. To resolve this problem, in this paper implemented a Micro Electro Mechanical System (MEMS) based pressure sensor in the design of barometric altimeter. MEMS are a class of systems that shares the existence of micro machined parts having both electrical and mechanical components incorporated on a single chip. MEMS pressure sensor guarantees higher degree of accuracy and reliability. These MEMS based barometric altimeter system operates with high sensitivity in the pressure. A temperature sensor is interfaced with the system so as to implement the dynamic temperature profiling approach as an attempt to eliminate the temperature dependent errors prevailing in the present day standard temperature profiled altimeters. MEMS based Barometric Altimeter is implemented using the following two modules: Embedded Module and Simulation Module. Even though the size of the MEMS based Barometric Altimeter is reduced, it provides more accuracy. —————————— ——————————
منابع مشابه
Simulation and Modeling of a High Sensitivity Micro-electro-mechanical Systems Capacitive Pressure Sensor with Small Size and Clamped Square Diaphragm
This paper proposes a Micro-electro-mechanical (MEMS) capacitive pressure sensor that relies on the movable electrode displaced like a flat plate equal to the maximum center deflection of diaphragm. The diaphragm, movable electrode and mechanical coupling are made of polysilicon, gold and Si3N4, respectively. The fixed electrode is gold and the substrate is Pyrex glass. This proposed method inc...
متن کاملWork in Progress: Experiments on MEMS Barometric Pressure Sensors
This paper overviews findings, potential and limitations of a low-cost vertical distance measurement system, as regards lab research and experimental education on MEMS barometric pressure sensors, and future research directions are also recommended.
متن کاملPiezoelectric polymer gated OFET: Cutting-edge electro-mechanical transducer for organic MEMS-based sensors
The growth of micro electro-mechanical system (MEMS) based sensors on the electronic market is forecast to be invigorated soon by the development of a new branch of MEMS-based sensors made of organic materials. Organic MEMS have the potential to revolutionize sensor products due to their light weight, low-cost and mechanical flexibility. However, their sensitivity and stability in comparison to...
متن کاملCompound semiconductor MEMS community targets new applications
The multi-billion-dollar market for micro-electro-mechanical systems (MEMS) devices containing micron-sized moving parts produced by photolithographic processes is overwhelmingly dominated by silicon. However, this material is not suitable for the fabrication of certain devices, and academic institutions and company research labs are using various compound semiconductor materials to produce MEM...
متن کاملA Complete Methodology for Electro-Mechanical Characterization of a CMOS Compatible MEMS Technology
In this paper we present a complete methodology for efficient electro-mechanical characterization of a CMOS compatible MEMS technology. Using an original test structure, the so-called “U-shape cantilever beam,” we are able to determine all mechanical characteristics of force sensors constituted with elementary beams in a given technology. A complete set of electro-mechanical relations for the d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011